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FEATURES OF THE PRESSURE—ATTENUATION CURVE IN RELAXATION FILTRATION
OF A FLUID

0. Yu. Dinariev UDGC 532.546

Laboratory experiments have shown that, for fluid filtration processes with a charac-
teristic fluctuation time of ~102 sec, theoretical predictions based on a model of the elas-
tic regime can differ from observed quantities by an order of magnitude [1-3]. Therefore,
in describing rapidly varying fluid filtration phenomena, the classic elastic equations
[4, 5] must be avoided, and equations from the relaxation theory of filtration {6, 7] must
be used instead, in particular, for the initial section of the pressure—attenuation curve.
In earlier approximate formulas for the pressure—attenuation curve, the relaxation kernel
had a somewhat special form [6]. The most general case [6] corresponds to a vibrating
Fourier-type relaxation kernel in the form of a ratio of two second-order polynomials. In
this work exact results are found for the initial section of the pressure—attenuation curve
for an arbitrary kernel which is consistent with physical and thermodynamic requirements.

1. We examine a homogeneous porous medium which is saturated with fluid. Isothermal
processes are studied in which the fluid density p differs only slightly from some fixed
value p,; therefore a linear expression can be used for the pressure

p = po + E(0 — 00)/py. (1.1)

In the relaxation theory of filtration [6, 7], Darcy's law is generalized as follows:
+ o0
u(ty )= —kp=t | K(t,—)VG(t, 1) dt, G=p+ pg. (1.2)

-—00

Here wu 'is the filtration velocity; k is the permeability; ® is the gravitational poten-
tial; and p is the viscosity, which will be considered constant. The kernel K = K(t), which
does not depend on the spatial coordinates, characterizes the internal relaxation processes
in the system of the porous medium and the fluid. The function K = K(t) satisfies a series
of conditions which follow from physical and thermodynamic considerations [2]:
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1. K = K(t) is a nonnegative function with dimensions of inverse time.

+o0
2. | K@di=1.

—o00

3. The carrier of the function K = K(t) lies on the axis [0, +~). On this axis K =
K(t) is a smooth, monotonic, rapidly decaying function. The condition K{(0) < +4«~ guarantees
a finite velocity of signal propagation during filtration [8].

Hereafter, the symbol fp denotes the Fourier transform of any function of time f = f(t):

o0
fﬂ@=lYFwW0& o R.

00

According to the Paley—¥Wiener theorem, it follows from condition 3 that Ky = Kp(w) can
be continued analytically into the lower half of the complex plane [9, 10]. According to
condition 2, KF(O) = 1. There is also the thermodynamic condition:

4. ReKp(w) > 0, w € R.
For large lwl, the following expansion is valid

Kp(0) = K(0)(i0)? + K'(0)(e)? + O(o™) . (1.3)

From (1.3) and condition 4 we require that K'(0) < 0. Furthermore, from condition 4, EHq.
(1.3), and the general theory [11], it follows that the holomorphic function Ky = Ky(w)
has no zeros for Im w < 0, therefore it reflects the half-plane Im w < 0 into itself. 1In
particular, the strict inequality 4 is observed over the whole lower complex half-plane.

During filtration of a fluid in a porous medium, the continuity equation 3(mp)/3t +
div (pw) = 0 1is obeyed (m is the porosity). This question, plus (1.1) and (1.2), gives
an equation for determining the dynamic pressure:

+o0
3 kE
}%(tov r) =% jK(to_‘t)AP(tvr)(]ta'/’v:—nm‘; (1.4)

where A is the Laplacian operator.

We will examine the two-dimensional problem of operating a well with a variable out-
put. In this case p = p(t, r), 0 < r; < r < r,, where r, is the radius of the well and
r, is the radius of the recharge contour. Equation (1.4) takes the form

~} 00
op n( 2+ L2\ b ryar
Gt o) =% | Kly—U{ 5+ 5 |pn)dh (1.5)

The boundary conditions are constant pressure at the recharge contour:
p(t, rs) = py = const (1.6)

and a given output q = q(t) per unit productive thickness of the bed:
F oo
P
g(ty) = A j‘ K (¢, — t)—a—r— pt ) dt, A= 2nrku—ip,. (1.7)

The condition (1.7) is obtained from the relaxation law of filtration (1.2).

In order to simplify future formulas, we choose a system of units for the time and
length variables in which k = r; = 1. We set P = p — p,. Then the equation for Py =
Pp(w, r) follows from (1.5)-(1.7):

3 1 8 i
(5;5+TF_K__F(m))PF=O (1.8)
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and the boundary conditions are
P,

PF Irzrz = 0 and 1 lpey == AQIQF/KF. (1. 9)
We determine the function o = a(w) from the relationships
a? = io/Kp(w), Rea = 0. (1.10)

It turns out that o = a(w) is homomorphic in the lower complex half-plaﬁe of the func-
tion and is continuous all the way to the real axis. Actually,

1.11
Im(ion/K;) = (ReoReKy + ImolmK )/ |K,|* ( )

and +oo
ImKp=— | et™mosin (¢ Row) X (¢) d. (1.12)

0

As a result of condition 3, Eq. (1.12) yields the inequality RewImKy < 0. Therefore, from
(1.11) and the assumptions, it follows that Im(iw/Ky) = 0, only if Rew = 0. In the last
case, however, if w # 0, then iw/Kp > O.

Therefore, for Imw < 0 and w # 0, we have Rea(w) > 0. Thus, Eq. (1.10) gives a =
‘a(w) as a smooth single-valued function. Generally speaking, the function a = o(w) can
be continued analytically into the upper half of the complex plane, but then it will have
a cut along the imaginary axis because of the cut related to the branching of the square
root and the singularities in Kp.

There is a simple solution to the problem (1.8) and (1.9)

ay (— Io (ar2) K0 (ar) - Ko (arz) Io (ar))

Pr= WK g (K, (o) 1, () T K, (@) 1, (@) ’ (1.13)

where I,(z), Ky(z) are the MacDonald functions [12]. Here I,(z) is a complete function,
but K,(z) has a cut along the negative real axis.

We now examine the asymptotic expansions of o and Py for |w| » +~. From (1.3) and
(1.10) we find

1
a = iog + a, + 0(0™1), a;=(K(O0)™12, @ay=— 5 K’ (0)di. (1.14)

From (1.13), (1.14), and the asymptotic expansions of the MacDonald functions [12,
13], we obtain
Pplge = —adhYHe(o, 1) — c Yo, N){cdo, 1) + cHo, 1)) + o(1),
c(o, r) = exp l(foe; -+ ag)(ry — ).

Thus, the convergence of the integral
1 .
P, 1) = S ey () Pr(w, r) do (1.15)

depends essentially on the properties of qp. For w » 0, we use (1.13) and the expressions
for the MacDonald functions [12, 13] to find

Pylge = A0 (r/ry) + o(1). (1.16)

1f q(t) = Q = const, then from (1.15), (1.16), and the formula qy(w) = 2mQ8(w) we find the
exact solution to be the same as for elastic theory [4, 5]:

P = A7Q In (r/ry). (1.17)

2. As in the classic formulation of the pressure—attenuation curve problem, we let
q = Q'6(—t), where Q is a constant and 8(t) is the Heaviside function. Then for t < 0,
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P is given by (1.17). We now change the notation. We set P(t, r) = p(t, r) — A" '1n(r/r,) -
p,. Then P = 0 for t < 0. From the linearity of the problem (1.5)-(1.7), P can be com-
puted from Eqs. (1.13) and (1.15), where gy = Qi/(w — ie), which corresponds to q(t) =
—Q-68(t). Here € is a small positive quantity, which must be set to zero after the cal-
culations are complete.

Because in this model the velocity of signal propagation is finite [8] and we are in-
terested in P{(t, r) for small values of the arguments, the dependence on r, should be in-
significant and we can extend r, to infinity in (1.13). Then by using the asymptotic
MacDonald functions [12, 13], we obtain

Py = —QiK(ar)/ [NKraK (a)(w — ig)]. (2.1)

We will investigate the pressure change in the well F(t) = P|,.=;. From (1.15) and
(2.1) we have

42 ot K (@)
Qi e'“*f (0) do _
Ft)= ~ S ©0—ig f(m)—KFocoKl(oc)'

-0

From the preceding it follows that the function f = f(w) is holomorphic in the half-
plane Imw < 0. We apply the asymptotic MacDonald functions [12, 13] and the expansions
(1.3) and (1.14), and compute the asymptotic expansions of f(w) for small and large w:

00, f(@)=In(io) + In(y2) +o(1), 7= ¢ (2.2)
and
{CUI—'F-{—(”, f(m)=a1+i\:(0—1+0((1)—2), ‘V=a'1_1(2—-a0)]; (2 3)
where C is Euler's constant. We define the function h; = h;(w) from the formula
_ In (iw) z':cl ix2
MO =y e, Tom, T

where the real numbers x,, X,, ¥,, and y, are the solutions of the (complex) equations and
the inequalities

Ttz =V, =5y — 2ly, + ap = In (¥/2), yy, yy > 0.

(2.4)
We set h, = f — hy;. Then F(t) = H,(t) + H,(t), where
Qi N3 eimhl(m) dw Qi +o° S
mwz—%x ﬁ;ﬁ—;m@=—%xme%me

According to (2.2)-(2.4), the function h,(w)/w has the following properties: it is
holomorphic for Imw < 0; it is smooth outside the point w = 0, where it has an integrable
(logarithmic) singularity; for large |w| it behaves asymptotically as h,(w)/w = 0(1/w3).
Using the Lebesgue theorem on the transition to the limit under the integral, it is easy
to be convinced that the function H, = H,(t) is continuous and differentiable for all t.
Because it is obvious that H,(t) = 0 for t < 0 (the Paley-Wiener theorem [9, 10]), H,(0) =

H',(0) — 0. From this one easily can derive that F(t) = H,(t) + o(t). In particular
dH

Flyo=H |imyp £ !

Ef_’f=+o=d_t t=t0 (2.5)
For computing the function H, = H,(t), we use formulas 3.352.6, 3.352.4, 8.214.1, and
8.214.2, respectively, from [13]:
}oe
e~ b2 gz —abT:
V.p. | &% —e-wRi(ah) (a>>0, Reb>> 0) (2.6)

0
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+ oo

e 0% dz .
= — e Ei (— ab) (larga|<<m, Reb> 0);

J ¥ (2.7)
=
Ei() =C+ In(—2) + 2 o 0);
(2) n(—z) glkkl (z<<0) (2.8)
Qo
Fi@=C+lz4 X2 (>0 (2.9)
R=1

where Ei(z) is the exponential integral function [13]. Now we compute the auxiliary in-
tegrals

+o0 tr
ei(‘)t In (l(l)) do S e’lﬁ)t In (z(),)) dw
= |, g ) SR >0 >0, (2.10)

keeping in mind that Inz is an analytic function with a cut along the negative real axis,
which in the w-plane corresponds to the positive imaginary axis. Shifting the integration
contour in (2.10) to avoid the cut, we use (2.6) and (2.7) and obtain

J, = 2nie~¢t (in @ — Ei(al)), J, = —2nie”Ei(—at). (2.11)
"Now, we use the expansion

(0 — i) Mw? 4+ 1) = A(o — ie) ™t + Blo — i) + Clo + )7,
A= =) B=—2701 — g1 =2 | g)7,

and also Eq. (2.11) and the theorem of residues, and easily calculate H,(t). Here it is
convenient to go to the limit &€ > +0 using (2.9). Then

1
H, () = Qri{ 4 (Ei(—1) + e 'Ei () — 2C—21n¢) +
b2 (e 1)+ 22 (7 — 1) 4 )
¥ Yy

From this equation, (2.5), (2.8),_and (2.9) we find
Fliepo = Qhay, dF/dtli—yo = —QA Yz, + 2,) = —QA7Wv, (2.12)

3. Equations (2.12), which are the basic result of this analysis, physically mean
that, after the well is stopped, the pressure undergoes a drop, and then begins to grow
with a finite slope. In dimensional variables, Eq. (2.12) takes the form

— dF - - -
Flimyo = QM n1/2qy, G Jmyg = — OF 112071 (2 — agu3/ar?). (3.1)

We will investigate how the observed effect behaves in the transition to the elastic
model. We set K(t) = £(t/e)/e, where f(t) is a smooth positive function for t > 0, which

~+o0

is normalized to S f@)dt::j} where € is a small positive parameter. As e » 0, K(t) tends
g

to the Dirac & function, and the model (1.2) transforms to the elastic model. Then, it
is easy to see that

ay = EP(O) 2, ay = e O)((O) 7,
F't=+0 — O, dF/dtlf____*.o — +00.

Thus, the finiteness of quantities in (3.1) is a specific property of the relaxation
model.

We note in conclusion that a pressure jump can be explained as follows. In the relaxa-
tion model, a perturbation in the fluid density propagates with a velocity v = [kK(0)1:/2
18]. In the problem, which actually was studied in Sec. 2, there was pumping into the bed,
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with an outflow Q per unit bed thickness. During a time At a mass QAt was pumped into the
bed, which corresponds to a density increase of Ap in a volume (2mr,vAt) of the porous
medium. It is easy to see that the relationship QAt = 27r,vmAtAp is equivalent to the first
of Egqs. (3.1).

This method can be used to compute the initial section of the pressure—attenuation
curve to any accuracy.
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