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FEATURES OF THE PRESSURE-ATTENUATION CURVE IN RELAXATION FILTRATION 

OF A FLUID 

O. Yu. Dinariev UDC 532.546 

Laboratory experiments have shown that, for fluid filtration processes with a charac- 
teristic fluctuation time of ~103 sec, theoretical predictions based on a model of the elas- 
tic regime can differ from observed quantities by an order of magnitude [1-3]. Therefore, 
in describing rapidly varying fluid filtration phenomena, the classic elastic equations 
[4, 5] must be avoided, and equations from the relaxation theory of filtration [6, 7] must 
be used instead, in particular, for the initial section of the pressure-attenuation curve. 
In earlier approximate formulas for the pressure-attenuation curve, the relaxation kernel 
had a somewhat special form [6]. The most general case [6] corresponds to a vibrating 
Fourier-type relaxation kernel in the form of a ratio of two second-order polynomials. In 
this work exact results are found for the initial section of the pressure-attenuation curve 
for an arbitrary kernel which is consistent with physical and thermodynamic requirements. 

i. We examine a homogeneous porous medium which is saturated with fluid. Isothermal 
processes are studied in which the fluid density O differs only slightly from some fixed 
value 00; therefore a linear expression can be used for the pressure 

P = Po -F E(p - -  P0)!P0. ( 1 . 1 )  

In  t h e  r e l a x a t i o n  t h e o r y  o f  f i l t r a t i o n  [6 ,  7 ] ,  D a r c y ' s  law i s  g e n e r a l i z e d  as f o l l o w s :  

+~ 

u(~,r)=--k~-* ~ K(t o- t )  VG(t,r)dt, G=p+p~.  (1.2) 

Here u is the filtration velocity; k is the permeability; �9 is the gravitational poten- 
tial; and ~ is the viscosity, which will be considered constant. The kernel K = K(t), which 
does not depend on the spatial coordinates, characterizes the internal relaxation processes 
in the system of the porous medium and the fluid. The function K = K(t) satisfies a series 
of conditions which follow from physical and thermodynamic considerations [2]: 
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i. K = K(t) is a nonnegative function with dimensions of inverse time. 

-~-oo 

2.  j K(t )  dt =- t .  
- - o o  

3. The carrier of the function K = K(t) lies on the axis [0, +~). On this axis K = 
K(t) is a smooth, monotonic, rapidly decaying function. The condition K(0) < +~ guarantees 
a finite velocity of signal propagation during filtration [8]. 

Hereafter, the symbol fF denotes the Fourier transform of any function of time f = f(t): 

I t ( @ =  J e- i~t /( t )  dt, ~ R. 

According to the Paley-Wiener theorem, it follows from condition 3 that K F = KF(~) can 
be continued analytically into the lower half of the complex plane [9, i0]. According to 
condition 2, KF(0) = i. There is also the thermodynamic condition: 

4. ReKF(~0) > 0, ~ e R. 

For large I ml, the following expansion is valid 

Kv(o) ) = K(O)(io)) -1 + K'(O)(i(o) -2 -k 0(o) -3) �9 ( 1 . 3 )  

From (1.3) and condition 4 we require that K'(0) < 0. Furthermore, from condition 4, Eq. 
(1.3), and the general theory [ii], it follows that the holomorphic function K F = KF(m) 
has no zeros for Im w < 0, therefore it reflects the half-plane Im w < 0 into itself. In 
particular, the strict inequality 4 is observed over the whole lower complex half-plane. 

During filtration of a fluid in a porous medium, the continuity equation 8(mp)/St + 
div (pu) = 0 is obeyed (m is the porosity). This question, plus (I.i) and (1.2), gives 
an equation for determining the dynamic pressure: 

+oo 

at @ ( t o ' r ) = •  K ( t o - - t ) A p ( t ' r ) d t ' ~ = - ~  '' (1.4) 

where A is the Laplacian operator. 

We will examine the two-dimensional problem of operating a well with a variable out- 
put. In this case p = p(t, r), 0 < r I ~ r ~ ri, where r I is the radius of the well and 
r 2 is the radius of the recharge contour. Equation (1.4) takes the form 

-,~- mo 

- ~  ar---~ + --7 ~ p (t, r) dr. (1.5) 

The boundary conditions are constant pressure at the recharge contour: 

p(t, r2) = P0 = const 

and a g i v e n  o u t p u t  q = q ( t )  pe r  u n i t  p r o d u c t i v e  t h i c k n e s s  o f  t h e  bed: 

(t .6) 

q ( t o ) = s  j '  K ( to - - t )  a p ( t ,  rl) dt, )~= 2grlk~-lpo. (1.7) 

The condition (1.7) is obtained from the relaxation law of filtration (1.2). 

In order to simplify future formulas, we choose a system of units for the time and 
length variables in which < = r~ = i. We set P = p - P0. Then the equation for PF = 
PF(~, r) follows from (1.5)-(1.7): 

2 2 | # i~ ) 
PF = 0 + r o,- K~-T~)) (1.8) 
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and the boundary conditions are 

oP F 
PF tr~r 2 : 0 and ~ r~l  = ~--lqF/KF" (1.9) 

We determine the function a = a(m) from the relationships 

~2 = i~/KF(m),  R e ~  O. ( 1 . 10 )  

It turns out that a = ~(~)  is homomorphic in the lower complex half-plane of the func- 
tion and is continuous all the way to the real axis. Actually, 

and 
Im(i(o/K~) = (Re~oReK F + Imo)ImK~)/]KFI 2~ 

+oo 

Im K~ = -- ~ e tIm(~ sin (t Re o)) K (t) dt. 
o 

(l.il) 

(1.12) 

As a result of condition 3, Eq. (1.12) yields the inequality Re~ImK F ~ 0. Therefore, from 
(i.ii) and the assumptions, it follows that Im(i~/K F) = 0, only if Rem = 0. In the last 
case, however, if ~ ~ 0, then im/K F > 0. 

Therefore, for Im~ ~ 0 and ~ ~ 0, we have Re~(m) > 0. Thus, Eq. (i.i0) gives a = 
~(m) as a smooth single-valued function. Generally speaking, the function ~ = ~(m) can 
be continued analytically into the upper half of the complex plane, but then it will have 
a cut along the imaginary axis because of the cut related to the branching of the square 
root and the singularities in K F. 

There is a simple solution to the problem (1.8) and (1.9) 

qF (-- Io (=r~) K o (=r) @ Kp (~r2) I o (ar)) 
PF = ~KF~ (K ~ (ar2) I1 (a) + El (~) Io (ar2)) , ( 1.13 ) 

where Iv(z), Kv(z) are the MacDonald functions [12]. Here Iv(z) is a complete function, 
but Kv(z) has a cut along the negative real axis. 

We now examine the asymptotic expansions of a and PF for Iml + +~. From (1.3) and 
(i.i0) we find 

i K' ~ = i ~ a l + a o + O ( ~ - l ) ,  a l = ( K ( O ) ) - l / 2  , a o = - - -  ~ (O)a~. ( 1 . 14 )  

From (1.13), (1.14), and the asymptotic expansions of the MacDonald functions [12, 
13], we obtain 

P~/qF = --atE-l(c( ~, r) - -  c-l(m, O)/(c(~, 1) + c-X(m, t)) + o(t), 

c(m, r) = exp [(ioa I + ao)(r, - -  ~1. 

Thus, the convergence of the integral 

P(t ,  r) =- ~-~ e~~ ((o) PF ((o, r) do) (1.15) 

depends essentially on the properties of qF" For m § 0, we use (1.13) and the expressions 
for the MacDonald functions [12, 13] to find 

PF/q~ = ~-lln (r/r~) @ o(t). ( 1 . 16 )  

I f  q ( t )  = O = c o n s t ,  t h e n  from ( 1 . 1 5 ) ,  ( 1 . 1 6 ) ,  and t h e  f o r mu l a  qF(~) = 2~QS(m) we f i n d  t h e  
exact solution to be the same as for elastic theory [4, 5]: 

p = %-IQ In (r/h).  ( i. 17 ) 

2. As in the classic formulation of the pressure-attenuation curve problem, we let 
q = Q'%(-t), where Q is a constant and e(t) is the Heaviside function. Then for t < 0, 
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P is given by (1.17). We now change the notation. We set P(t, r) = p(t, r) - i-lln(r/r=) - 
P0. Then P = 0 for t < 0. From the linearity of the problem (1.5)-(1.7), P can be com- 
puted from Eqs. (1.13) and (1.15), where qF = Qi/(~ - is), which corresponds to q(t) = 
-Q'8(t). Here ~ is a small positive quantity, which must be set to zero after the cal- 
culations are complete. 

Because in this model the velocity of signal propagation is finite [8] and we are in- 
terested in P(t, r) for small values of the arguments, the dependence on r= should be in- 
significant and we can extend r= to infinity in (1.13). Then by using the asymptotic 
MacDonald functions [12, 13], we obtain 

PF = - -QiKo(ar) / [~K~aKl(a) (w - -  ie) 1. ( 2 . 1 )  

We will investigate the pressure change in the well F(t) = Plr=l" From (1.15) and 
(2.1) we have 

+~ 
Qi f ei~t I (o) do K0(a) 

F (t) = -- ~-f ~ ~ : 7 i  ' ~ (~) = KF~K ~ (~)" 

From the preceding it follows that the function f = f(~) is holomorphic in the half- 
plane Imm < 0. We apply the asymptotic MacDonald functions [12, 13] and the expansions 
(1.3) and (1.14), and compute the asymptotic expansions of f(m) for small and large ~: 

1 ~---)-0, / ( o )  = - T l n ( i ~ )  + ln(?/2)  + o( t ) ,  7 = ec 

and  

t~l --+ + ~ ,  ] ( ~ ) = a l  + i vw- l  + O ( ~ - 2 ) ,  v = a F  1 ( 2 - a o )  I;' 

where C is Euler's constant. We define the function h I = hz(~) from the formula 

In (ion) ixa ix 2 
- -  + - -  + a l ,  

h i (o) 2 (o 2 + t) + o -- iv 1 o -- iv 2 

( 2 . 2 )  

( 2 . 3 )  

where the real numbers xl, x2, Yl, and Y2 are the solutions of the (complex) equations and 
the inequalities 

x 1 + x 2 = v,  - - x / y  1 - -x~/y2 + a 1 = in (?/2), Yl, g2:  > 0 .  
( 2 . 4 )  

We set h z = f - h I. Then F(t) = Hi(t) + H2(t) , where 

H~ (t) 
@oo , @oo 

Qi ~" e '~176176 H i ( t ) =  - Q~ ~ 2 ~  3 ~ - -  ie  ' ' ~ e ~ ~  (o@ do. 
- - o o  - - o o  

According to (2.2)-(2.4), the function h2(~)/~ has the following properties: it is 
holomorphic for Imm < 0; it is smooth outside the point m = 0, where it has an integrable 
(logarithmic) singularity; for large I~I it behaves asymptotically as h2(w)/w = 0(i/~3). 
Using the Lebesgue theorem on the transition to the limit under the integral, it is easy 
to be convinced that the function H2 = H2(t) is continuous and differentiable for all t. 
Because it is obvious that Hg(t) = 0 for t < 0 (the Paley-Wiener theorem [9, i0]), H2(0 ) = 
H'2(0) - 0. From this one easily can derive that F(t) = Hi(t) + o(t). In particular 

dd~ t--+o dH~ t=+o" F l t = + 0 = H  It=+0, = dt ( 2 . 5 )  

F o r  c o m p u t i n g  t h e  f u n c t i o n  H~ = H a ( t ) ,  we u s e  f o r m u l a s  3 . 3 5 2 . 6 ,  3 . 3 5 2 . 4 ,  8 . 2 1 4 . 1 ,  and 
8.214.2, respectively, from [13]: 

+oo 

I e -bz dz 
V.p .  ~ - - z  

0 

e-~bEi (ab) (a > 0, Re b > 0); ( 2 . 6  ) 
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S e -bz dz F--~+a e"bEi(--ab) (largal < u ,  R e b >  0); 
0 

+oo Z h 
E i ( z ) = C + l n ( - - z ) + X  kk--I 

h=l 

+~ zh 
E i ( z ) = C + l n z + X  kk--T 

h=l 

where El(z) is the exponential integral function [13]. 
t e g r a l s  

+~ +~ 

S S eiotln(i~176 d l  = e{~ ~oln--(i~ do ' J2 = ~ ~ a/ 

--oo --oo 

( 2 . 7 )  

( z < 0 ) ;  ( 2 . 8 )  

( z > 0 )  ( 2 . 9 )  

Now we compute the auxiliary in- 

, a > 0 ,  t > 0 ,  ( 2 . 1 0 )  

keeping in mind that in z is an analytic function with a cut along the negative real axis? 
which in the m-plane corresponds to the positive imaginary axis. Shifting the integration 
contour in (2.10) to avoid the cut, we use (2.6) and (2.7) and obtain 

Yl = 2nie-" t  (ln a -- El(at)),  23 = --2:rie~tEi(--at). 

Now, we use the expansion 

((0 - -  i~) -1(~2 _1_ ,1_)-1 = A ( o  - -  ie) -1 @ B ( o  - -  0 -1 @ C ( o  .+ i ) -1 ,  

A = (t - -  @)-:, B = - -2- i (1  - -  @-:, C = --2-1(1 + e)-: ,  

(2.11) 

and also Eq. (2.11) and the theorem of residues, and easily calculate Hi(t). Here it is 
convenient to go to the limit e + +0 using (2.9). Then 

i (e t E i ( _ t ) + e  - t E i ( t ) - 2 c - 2 1 n t ) +  Hi( t )  = Q ) - t  4 

- 'a ' 1) + 1) +.1/ .  + 
Yl .e ~ Y2 ) 

From this equation, (2.5), (2.8), and (2.9) we find 

f l t=+o = QL-lal, dF/dtl~=+o = -QL-i(z I ~- X2) = --Q~-I?o ( 2 . 1 2 )  

3.  E q u a t i o n s  ( 2 . 1 2 ) ,  w h i c h  a r e  t h e  b a s i c  r e s u l t  o f  t h i s  a n a l y s i s ,  p h y s i c a l l y  mean 
that, after the well is stopped, the pressure undergoes a drop, and then begins to grow 
with a finite slope. In dimensional variables, Eq. (2.12) takes the form 

dF 
F[t=+o = QE-l• -:7 t=+o = -- Q~-a• (2 -- ao• (3. I) 

We will investigate how the observed effect behaves in the transition to the elastic 
model. We set K(t) = f(t/c)/e, where f(t) is a smooth positive function for t > 0, which 

is normalized to ] /(t)dt = I, where e is a small positive parameter. As E 0, K(t) tends 
0 

to the Dirac 6 function, and the model (1.2) transforms to the elastic model. Then, it 
is easy to see that 

ai = ~lt~(f(O))-V 2, ao = ~-l/V'(0)(/(0))-~/2, 

Fit=+0 ~ 0, dF/dtlt=+o ~ +oo. 

Thus, the finiteness of quantities in (3.1) is a specific property of the relaxation 
model. 

We note in conclusion that a pressure jump can be explained as follows. In the relaxa- 
tion model, a perturbation in the fluid density propagates with a velocity v = [KK(0)]I/2 
[8]. In the problem, which actually was studied in Sec. 2, there was pumping into the bed, 
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with an outflow Q per unit bed thickness. During a time At a mass QAt was pumped into the 
bed, which corresponds to a density increase of Ap in a volume (2~rlvAt) of the porous 
medium. It is easy to see that the relationship QAt = 2~rlvmAtA 0 is equivalent to the first 
of Eqs. (3.1). 

This method can be used to compute the initial section of the pressure-attenuation 
curve to any accuracy. 
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