## LITERATURE CITED

1. A. Kh. Mirzadzhanzade and S. A. Shirinzade, Increasing the Efficiency and Quality of Boring Deep Wells [in Russian], Nedra, Moscow (1986).
2. A. A. Samarskii', V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Regimes with Singularities in Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987).
3. Yu. M. Molokovich, N. N. Neprimerov, V. I. Pikuza, and A. V. Shtanin, Relaxation Filtration [in Russian], Izd. KGU [Kazan State University Press], Kazan (1980).
4. J. G. Oldroyd, "Nonlinear stress and rate of strain relations at finite rate of shear in so-called 'linear elastico-viscous' liquids," in: Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics: Proceedings of an International Symposium 1962, Leningrad (1964).
5. U. L. Wilkinson, Non-Newtonian Fluids [Russian translation], Mir, Moscow (1964).
6. G. I. Barenblatt, V. M. Entov, and I. M. Ryzhik, Theory of Nonstationary Filtration of Liquid and Gas [in Russian], Nedra, Moscow (1972).
7. S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, New York (1973).

FEATURES OF THE PRESSURE-ATTENUATION CURVE IN RELAXATION FILTRATION
of A FLUID
0. Yu. Dinariev

UDC 532.546

Laboratory experiments have shown that, for fluid filtration processes with a characteristic fluctuation time of $\sim 10^{3} \mathrm{sec}$, theoretical predictions based on a model of the elastic regime can differ from observed quantities by an order of magnitude [1-3]. Therefore, in describing rapidly varying fluid filtration phenomena, the classic elastic equations [4, 5] must be avoided, and equations from the relaxation theory of filtration [6, 7] must be used instead, in particular, for the initial section of the pressure-attenuation curve. In earlier approximate formulas for the pressure-attenuation curve, the relaxation kernel had a somewhat special form [6]. The most general case [6] corresponds to a vibrating Fourier-type relaxation kernel in the form of a ratio of two second-order polynomials. In this work exact results are found for the initial section of the pressure-attenuation curve for an arbitrary kernel which is consistent with physical and thermodynamic requirements.

1. We examine a homogeneous porous medium which is saturated with fluid. Isothermal processes are studied in which the fluid density $\rho$ differs only slightly from some fixed value $\rho_{0}$; therefore a linear expression can be used for the pressure

$$
\begin{equation*}
p=p_{0}+E\left(\rho-\rho_{0}\right) / \rho_{0} . \tag{1.1}
\end{equation*}
$$

In the relaxation theory of filtration [6, 7], Darcy's law is generalized as follows:

$$
\begin{equation*}
\mathbf{u}\left(t_{0}, r\right)=-k \mu^{-1} \int_{-\infty}^{+\infty} K\left(t_{0}-t\right) \nabla G(t, \mathbf{r}) d t, \quad G=p+\rho \psi . \tag{1.2}
\end{equation*}
$$

Here $\mathbf{u}$ is the filtration velocity; $k$ is the permeability; $\varphi$ is the gravitational potential; and $\mu$ is the viscosity, which will be considered constant. The kernel $K=K(t)$, which does not depend on the spatial coordinates, characterizes the internal relaxation processes in the system of the porous medium and the fluid. The function $K=K(t)$ satisfies a series of conditions which follow from physical and thermodynamic considerations [2]:

[^0]1. $K=K(t)$ is a nonnegative function with dimensions of inverse time.
2. $\int_{-\infty}^{+\infty} K(t) d t=1$.
3. The carrier of the function $K=K(t)$ lies on the axis $[0,+\infty)$. On this axis $K=$ $K(t)$ is a smooth, monotonic, rapidly decaying function. The condition $K(0)<+\infty$ guarantees a finite velocity of signal propagation during filtration [8].

Hereafter, the symbol $f_{F}$ denotes the Fourier transform of any function of time $f=f(t)$ :

$$
f_{F}(\omega)=\int_{-\infty}^{+\infty} \mathrm{e}^{-i \omega t} f(t) d t, \quad \omega \in R
$$

According to the Paley-Wiener theorem, it follows from condition 3 that $K_{F}=K_{F}(\omega)$ can be continued analytically into the lower half of the complex plane [9, 10]. According to condition $2, \mathrm{~K}_{\mathrm{F}}(0)=1$. There is also the thermodynamic condition:
4. $\operatorname{ReK}_{F}(\omega)>0, \omega \in R$.

For large $|\omega|$, the following expansion is valid

$$
\begin{equation*}
K_{F}(\omega)=K(0)(i \omega)^{-1}+K^{\prime}(0)(i \omega)^{-2}+O\left(\omega^{-3}\right) \tag{1.3}
\end{equation*}
$$

From (1.3) and condition 4 we require that $K^{\prime}(0)<0$. Furthermore, from condition 4 , Eq. (1.3), and the general theory [11], it follows that the holomorphic function $K_{F}=K_{F}(\omega)$ has no zeros for $\operatorname{Im} \omega<0$, therefore it reflects the half-plane Im $\omega<0$ into itself. In particular, the strict inequality 4 is observed over the whole lower complex half-plane.

During filtration of a fluid in a porous medium, the continuity equation $\partial(m \rho) / \partial t+$ div ( $\rho \mathbf{u}$ ) $=0$ is obeyed ( $m$ is the porosity). This question, plus (1.1) and (1.2), gives an equation for determining the dynamic pressure:

$$
\begin{equation*}
\frac{\partial p}{\partial t}\left(t_{0}, \mathbf{r}\right)=\chi \int_{-\infty}^{+\infty} K\left(t_{0}-t\right) \Delta p(t, \mathbf{r}) d t, \varkappa=\frac{k E}{m \mu} \tag{1.4}
\end{equation*}
$$

where $\Delta$ is the Laplacian operator.
We will examine the two-dimensional problem of operating a well with a variable output. In this case $p=p(t, r), 0<r_{1} \leq r \leq r_{2}$, where $r_{1}$ is the radius of the well and $r_{2}$ is the radius of the recharge contour. Equation (1.4) takes the form

$$
\begin{equation*}
\frac{\partial p}{\partial t}\left(t_{0}, r\right)=x \int_{-\infty}^{+\infty} K\left(t_{0}-t\right)\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) p(t, r) d t \tag{1.5}
\end{equation*}
$$

The boundary conditions are constant pressure at the recharge contour:

$$
\begin{equation*}
p\left(t, r_{2}\right)=p_{0}=\mathrm{const} \tag{1.6}
\end{equation*}
$$

and a given output $q=q(t)$ per unit productive thickness of the bed:

$$
\begin{equation*}
q\left(t_{0}\right)=\lambda \int_{-\infty}^{+\infty} K\left(t_{0}-t\right) \frac{\partial}{\partial r} p\left(t, r_{1}\right) d t, \quad \lambda=2 \pi r_{1} k \mu^{-1} \rho_{0} \tag{1.7}
\end{equation*}
$$

The condition (1.7) is obtained from the relaxation law of filtration (1.2).
In order to simplify future formulas, we choose a system of units for the time and length variables in which $\kappa=r_{1}=1$. We set $P=p-p_{0}$. Then the equation for $P_{F}=$ $\mathrm{P}_{\mathrm{F}}(\omega, \mathrm{r})$ follows from (1.5)-(1.7):

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{i \omega}{K_{F}(\omega)}\right) P_{F}=0 \tag{1.8}
\end{equation*}
$$

and the boundary conditions are

$$
\begin{equation*}
\left.P_{F}\right|_{r=r_{2}}=0 \text { and }\left.\frac{\partial P_{F}}{\partial r}\right|_{r=1}=\lambda^{-1} q_{F} / K_{F} \tag{1.9}
\end{equation*}
$$

We determine the function $\alpha=\alpha(\omega)$ from the relationships

$$
\begin{equation*}
\alpha^{2}=i \omega / K_{F}(\omega), \operatorname{Re} \alpha \geqslant 0 \tag{1.10}
\end{equation*}
$$

It turns out that $\alpha=\alpha(\omega)$ is homomorphic in the lower complex half-plane of the function and is continuous all the way to the real axis. Actually,

$$
\begin{equation*}
\operatorname{Im}\left(i \omega / K_{F}\right)=\left(\operatorname{Re} \omega \operatorname{Re} K_{F}+\operatorname{Im} \omega \operatorname{Im} K_{F}\right) /\left|K_{F}\right|^{2} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} K_{F}=-\int_{0}^{+\infty} \mathrm{e}^{t \operatorname{Im} \omega} \sin (t \operatorname{Re} \omega) K(t) d t \tag{1.12}
\end{equation*}
$$

As a result of condition 3 , Eq. (1.12) yields the inequality RewIm $K_{F} \leq 0$. Therefore, from (1.11) and the assumptions, it follows that $\operatorname{Im}\left(i \omega / K_{F}\right)=0$, only if $\operatorname{Re} \omega=0$. In the last case, however, if $\omega \neq 0$, then $i \omega / K_{F}>0$.

Therefore, for $\operatorname{Im} \omega \leq 0$ and $\omega \neq 0$, we have $\operatorname{Re} \alpha(\omega)>0$. Thus, Eq. (1.10) gives $\alpha=$ $\alpha(\omega)$ as a smooth single-valued function. Generally speaking, the function $\alpha=\alpha(\omega)$ can be continued analytically into the upper half of the complex plane, but then it will have a cut along the imaginary axis because of the cut related to the branching of the square root and the singularities in $K_{F}$.

There is a simple solution to the problem (1.8) and (1.9)

$$
\begin{equation*}
P_{F}=\frac{q_{F}\left(-I_{0}\left(\alpha r_{2}\right) K_{0}(\alpha r)+K_{0}\left(\alpha r_{2}\right) I_{0}(\alpha r)\right)}{\lambda K_{F^{\alpha}}\left(K_{0}\left(\alpha r_{2}\right) I_{1}(\alpha)+K_{1}(\alpha) I_{0}\left(\alpha r_{2}\right)\right)} \tag{1.13}
\end{equation*}
$$

where $I_{V}(z), K_{V}(z)$ are the MacDonald functions [12]. Here $I_{V}(z)$ is a complete function, but $K_{V}(z)$ has a cut along the negative real axis.

We now examine the asymptotic expansions of $\alpha$ and $P_{F}$ for $|\omega| \rightarrow+\infty$. From (1.3) and (1.10) we find

$$
\begin{equation*}
\alpha=i \omega a_{1}+a_{0}+O\left(\omega^{-1}\right), \quad a_{1}=(K(O))^{-1 / 2}, \quad a_{0}=-\frac{1}{2} K^{\prime}(O) a_{1}^{3} \tag{1.14}
\end{equation*}
$$

From (1.13), (1.14), and the asymptotic expansions of the MacDonald functions [12, 13], we obtain

$$
\begin{gathered}
P_{F} / q_{F}=-a_{1} \lambda^{-1}\left(c(\omega, r)-c^{-1}(\omega, r)\right) /\left(c(\omega, 1)+c^{-1}(\omega, 1)\right)+o(1) \\
c(\omega, r)=\exp \left[\left(i \omega a_{1}+a_{0}\right)\left(r_{2}-r\right)\right]
\end{gathered}
$$

Thus, the convergence of the integral

$$
\begin{equation*}
P(t, r)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{e}^{i \omega t} q_{F}(\omega) P_{F}(\omega, r) d \omega \tag{1.15}
\end{equation*}
$$

depends essentially on the properties of $q_{F}$. For $\omega \rightarrow 0$, we use (1.13) and the expressions for the MacDonald functions [12, 13] to find

$$
\begin{equation*}
P_{F} / q_{F}=\lambda^{-1} \ln \left(r / r_{2}\right)+o(1) \tag{1.16}
\end{equation*}
$$

If $q(t)=Q=$ const, then from (1.15), (1.16), and the formula $q_{F}(\omega)=2 \pi Q \delta(\omega)$ we find the exact solution to be the same as for elastic theory [4, 5]:

$$
\begin{equation*}
P=\lambda^{-1} Q \ln \left(r / r_{2}\right) \tag{1.17}
\end{equation*}
$$

2. As in the classic formulation of the pressure-attenuation curve problem, we let $q=Q \cdot \theta(-t)$, where $Q$ is a constant and $\theta(t)$ is the Heaviside function. Then for $t<0$,
$P$ is given by (1.17). We now change the notation. We set $P(t, r)=p(t, r)-\lambda^{-1} \ln \left(r / r_{2}\right)-$ $p_{0}$. Then $P=0$ for $t<0$. From the linearity of the problem (1.5)-(1.7), $P$ can be computed from Eqs. (1.13) and (1.15), where $q_{F}=Q i /(\omega-i \varepsilon)$, which corresponds to $q(t)=$ $-Q \cdot \theta(t)$. Here $\varepsilon$ is a small positive quantity, which must be set to zero after the calculations are complete.

Because in this model the velocity of signal propagation is finite [8] and we are interested in $P(t, r)$ for small values of the arguments, the dependence on $r_{2}$ should be insignificant and we can extend $r_{2}$ to infinity in (1.13). Then by using the asymptotic MacDonald functions [12, 13], we obtain

$$
\begin{equation*}
P_{F}=-Q i K_{0}(\alpha r) /\left[\lambda K_{F} \alpha K_{1}(\alpha)(\omega-i \varepsilon)\right] \tag{2.1}
\end{equation*}
$$

We will investigate the pressure change in the well $F(t)=\left.P\right|_{r=1}$. From (1.15) and (2.1) we have

$$
F(t)=-\frac{Q i}{2 \pi \lambda} \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \omega t} f(\omega) d \omega}{\omega-i \varepsilon}, \quad f(\omega)=\frac{K_{0}(\alpha)}{K_{F} \alpha K_{1}(\alpha)}
$$

From the preceding it follows that the function $f=f(\omega)$ is holomorphic in the halfplane $\operatorname{Im} \omega<0$. We apply the asymptotic MacDonald functions [12, 13] and the expansions (1.3) and (1.14), and compute the asymptotic expansions of $f(\omega)$ for smali and large $\omega$ :

$$
\begin{equation*}
\omega \rightarrow 0, \quad f(\omega)=\frac{1}{2} \ln (i \omega)+\ln (\gamma / 2)+o(1), \quad \gamma=\mathrm{e}^{\mathrm{c}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|\omega| \rightarrow+\infty, \quad f(\omega)=a_{1}+i v \omega^{-1}+O\left(\omega^{-2}\right), \quad \nu=a_{1}^{-1}\left(2-a_{0}\right) \mid ; \tag{2.3}
\end{equation*}
$$

where $C$ is Euler's constant. We define the function $h_{1}=h_{1}(\omega)$ from the formula

$$
h_{1}(\omega)=\frac{\ln (i \omega)}{2\left(\omega^{2}+1\right)}+\frac{i x_{1}}{\omega-i y_{1}}+\frac{i x_{2}}{\omega-i y_{2}}+a_{1}
$$

where the real numbers $x_{1}, x_{2}, y_{1}$, and $y_{2}$ are the solutions of the (complex) equations and the inequalities

$$
\begin{equation*}
x_{1}+x_{2}=v,-x_{1} / y_{1}-x_{2} / y_{2}+a_{1}=\ln (\gamma / 2), y_{1}, y_{2}>0 \tag{2.4}
\end{equation*}
$$

We set $h_{2}=f-h_{1}$. Then $F(t)=H_{1}(t)+H_{2}(t)$, where

$$
H_{1}(t)=-\frac{Q i}{2 \pi \lambda} \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \omega t} h_{1}(\omega) d \omega}{\omega-i \varepsilon} ; \quad H_{2}(t)=-\frac{Q i}{2 \pi \lambda} \int_{-\infty}^{+\infty} \mathrm{e}^{i \omega t} \omega^{-1} h_{2}(\omega) d \omega
$$

According to (2.2)-(2.4), the function $h_{2}(\omega) / \omega$ has the following properties: it is holomorphic for $\operatorname{Im} \omega<0$; it is smooth outside the point $\omega=0$, where it has an integrable (logarithmic) singularity; for large $|\omega|$ it behaves asymptotically as $h_{2}(\omega) / \omega=0\left(1 / \omega^{3}\right)$. Using the Lebesgue theorem on the transition to the limit under the integral, it is easy to be convinced that the function $\mathrm{H}_{2}=\mathrm{H}_{2}(\mathrm{t})$ is continuous and differentiable for all t . Because it is obvious that $H_{2}(t)=0$ for $t<0$ (the Paley-Wiener theorem [9, 10]), $H_{2}(0)=$ $\mathrm{H}_{2}(0)-0$. From this one easily can derive that $\mathrm{F}(\mathrm{t})=\mathrm{H}_{1}(\mathrm{t})+\mathrm{o}(\mathrm{t})$. In particular

$$
\begin{equation*}
\left.F\right|_{t=+0}=\left.H_{:}\right|_{t=+0},\left.\quad \frac{d F}{d t}\right|_{t=+0}=\left.\frac{d H_{1}}{d t}\right|_{t=+0} \tag{2.5}
\end{equation*}
$$

For computing the function $H_{1}=H_{1}(t)$, we use formulas 3.352.6, 3.352.4, 8.214.1, and 8.214.2, respectively, from [13]:

$$
\begin{equation*}
\text { V.p. } \int_{0}^{+\infty} \frac{\mathrm{e}^{-b z} d z}{a-z}=\mathrm{e}^{-a b} \operatorname{Ei}(a b) \quad(a>0, \operatorname{Re} b>0) \tag{2.6}
\end{equation*}
$$

$$
\begin{gather*}
\int_{0}^{+\infty} \frac{\mathrm{e}^{-b z} d z}{z+a}=-\mathrm{e}^{\mathrm{u} b} \operatorname{Ei}(-a b) \quad(|\arg a|<\pi, \operatorname{Re} b>0) ;  \tag{2.7}\\
\operatorname{Ei}(z)=\mathrm{C}+\ln (-z)+\sum_{k=1}^{+\infty} \frac{z^{k}}{k k!} \quad(z<0) ;  \tag{2.8}\\
\operatorname{Ei}(z)=\mathrm{C}+\ln z+\sum_{h=1}^{+\infty} \frac{z^{k}}{k k!} \quad(z>0) \tag{2.9}
\end{gather*}
$$

where $\operatorname{Ei}(z)$ is the exponential integral function [13]. Now we compute the auxiliary integrals

$$
\begin{equation*}
J_{1}=\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \omega t} \ln (i \omega) d \omega}{\omega-a i}, \quad J_{2}=\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \omega t} \ln (i \omega) d \omega}{\omega+a i}, \quad a>0, \quad t>0, \tag{2.10}
\end{equation*}
$$

keeping in mind that $\ln z$ is an analytic function with a cut along the negative real axis, which in the $\omega$-plane corresponds to the positive imaginary axis. Shifting the integration contour in (2.10) to avoid the cut, we use (2.6) and (2.7) and obtain

$$
\begin{equation*}
J_{1}=2 \pi \mathrm{ie}^{-a t}(\ln a-\operatorname{Ei}(a t)), J_{2}=-2 \pi \mathrm{i} \mathrm{e}^{a t} \mathrm{Ei}(-a t) \tag{2.11}
\end{equation*}
$$

Now, we use the expansion

$$
\begin{gathered}
(\omega-i \varepsilon)^{-1}\left(\omega^{2}+1\right)^{-1}=A(\omega-i \varepsilon)^{-1}+B(\omega-i)^{-1}+C(\omega+i)^{-1} \\
A=\left(1-\varepsilon^{2}\right)^{-1}, B=-2^{-1}(1-\varepsilon)^{-1}, C=-2^{-1}(1+\varepsilon)^{-1}
\end{gathered}
$$

and also Eq. (2.11) and the theorem of residues, and easily calculate $H_{1}(t)$. Here it is convenient to go to the limit $\varepsilon \rightarrow+0$ using (2.9). Then

$$
\begin{aligned}
H_{1}(t)= & Q \lambda^{-1}\left\{\begin{array}{l}
1 \\
4
\end{array}\left(\mathrm{e}^{t} \mathrm{Ei}(-t)+\mathrm{e}^{-t} \mathrm{Ei}(t)-2 \mathrm{C}-2 \ln t\right)+\right. \\
& \left.+\frac{x_{1}}{y_{1}}\left(\mathrm{e}^{-y_{1} t}-1\right)+\frac{x_{2}}{y_{2}}\left(\mathrm{e}^{-y_{2} t}-1\right)+a_{1}\right\} .
\end{aligned}
$$

From this equation, (2.5), (2.8), and (2.9) we find

$$
\begin{equation*}
\left.F\right|_{t=+0}=Q \lambda^{-1} a_{1}, d F /\left.d t\right|_{t=+0}=-Q \lambda^{-1}\left(x_{1}+x_{2}\right)=-Q \lambda^{-1} v . \tag{2.12}
\end{equation*}
$$

3. Equations (2.12), which are the basic result of this analysis, physically mean that, after the well is stopped, the pressure undergoes a drop, and then begins to grow with a finite slope. In dimensional variables, Eq. (2.12) takes the form

$$
\begin{equation*}
\left.F\right|_{t=+0}=Q \lambda^{-1} \chi^{1 / 2} a_{1},\left.\quad \frac{d F}{d t}\right|_{t=+0}=-Q \lambda^{-1} \varkappa^{1 / 2} a_{1}^{-1}\left(2-a_{0} \varkappa^{3 / 2} r_{1}^{-3}\right) . \tag{3.1}
\end{equation*}
$$

We will investigate how the observed effect behaves in the transition to the elastic model. We set $K(t)=f(t / \varepsilon) / \varepsilon$, where $f(t)$ is a smooth positive function for $t>0$, which is normalized to $\int_{0}^{+\infty} f(t) d t=1$, where $\varepsilon$ is a small positive parameter. As $\varepsilon \rightarrow 0, K(t)$ tends to the Dirac $\delta$ function, and the model (1.2) transforms to the elastic model. Then, it is easy to see that

$$
\begin{gathered}
a_{1}=\varepsilon^{1 / 2}(f(0))^{-1 / 2}, a_{0}=\varepsilon^{-1 / 2} f^{\prime}(0)(f(0))^{-3 / 2}, \\
\left.F\right|_{t=+0} \rightarrow 0, d F /\left.d t\right|_{t=+0} \rightarrow+\infty .
\end{gathered}
$$

Thus, the finiteness of quantities in (3.1) is a specific property of the relaxation model.

We note in conclusion that a pressure jump can be explained as follows. In the relaxation model, a perturbation in the fluid density propagates with a velocity $\mathrm{v}=[\kappa \mathrm{K}(0)]_{1 / 2}$ [8]. In the problem, which actually was studied in Sec. 2, there was pumping into the bed,
with an outflow $Q$ per unit bed thickness. During a time $\Delta t$ a mass $Q \Delta t$ was pumped into the bed, which corresponds to a density increase of $\Delta \rho$ in a volume ( $2 \pi r_{1} v \Delta t$ ) of the porous medium. It is easy to see that the relationship $Q \Delta t=2 \pi r_{1} v m \Delta t \Delta \rho$ is equivalent to the first of Eqs. (3.1).

This method can be used to compute the initial section of the pressure-attenuation curve to any accuracy.

## LITERATURE CITED

1. O. Yu. Dinariev and O. V. Nikolaev, "Relaxation phenomena in saturated porous media," Systematic Approach to Planning the Development of Natural Gas Deposits in Southern Siberia [in Russian], VNIIGAZ, Moscow (1988).
2. O. Yu. Dinariev and O. V. Nikolaev, "Relaxation phenomena in saturated porous media: linear theory," Zh. Prikl. Mat. Mekh., 53, No. 3 (1989).
3. O. Yu. Dinariev and O. V. Nikolaev, "Relaxation phenomena in low-permeability porous media," Inzh.-Fiz. Zh., 58, No. 1 (1990).
4. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of the Nonstationary Filtration of Liquid and Gas [in Russian], Nedra, Moscow (1972).
5. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Liquids and Gases in Underground Beds [in Russian], Nedra, Moscow (1984).
6. Yu. M. Molokovich, N. N. Neprimerov, V. I. Pikuza, and A. V. Shtanik, Relaxation Filtration [in Russian], Izd-vo KGU [Kazan State Univeristy Press], Kazan (1980).
7. Yu. M. Molokovich, "Basic relaxation filtration," in: Problems of the Theory of Filtration and the Mechanics of Processes to Increase Petroleum Production [in Russian], Nauka, Moscow (1987).
8. O. Yu. Dinariev, "Wave propagation velocity for transfer processes with relaxation," Dok1. Akad. Nauk SSSR, 301, No. 5 (1988).
9. G. Weiss and I. Stein, Introduction to Harmonic Analysis in Euclidean Spaces [Russian translation], Mir, Moscow (1974).
10. L. Hoermander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer-Verlag, New York (1983).
11. S. Stoilov, Theory of Functions of Complex Variables: Basic Concepts and Principles [Russian translation], Vo1. 1, IL, Moscow (1962).
12. G. Bateman and A. Erdelyi, Higher Transcendental Functions: Bessel Functions, Parabolic Cylinder Functions, and Orthogonal Polynomials [in Russian], Nauka, Moscow (1974).
13. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, 4th ed., Academic Press, New York (1965).

[^0]:    Moscow. Translated from Zhurnal Prikladnoi' Mekhaniki i Tekhnicheskoi' Fiziki, No. 5, pp. 106-111, September-October, 1991. Original article submitted December 12, 1989; revision submitted May 15, 1990.

